Jonic Properties Write out the dissolving equation for the following and draw a picture. - 1) KCI > K+ + C1 - Draw relative sizes and create a key/ legend next to beaker. - b. Why is one atom bigger/smaller/nearly the same? (Coulomb's law) Similar size 3 enegy leves K+FAT CV [AT] 2) $Ba_3N_2 \rightarrow Ba^{+2} + N^{-3}$ - a. Draw relative sizes and create a key/ legend next to beaker. - b. Why is one atom bigger/smaller/nearly the same? c. Which has a higher melting point Ba₃N₂ or KCl? - - * How would you use coulomb's law to justify? lenger changes = more concombic attraction = Stronger Bonds Higher Meldons points 3) KNO₃→ K⁴ + N⁰/₃ Note: NO₃-1 is a molecular ion. 4) CO₂ (this is a covalent substance that looks like O=C=O) 5) For each drawing indicate if the substance is covalent or lonic. Write the correct formula for the substance using the symbols. Formula Ocz (C) Molecular ΔC , D (IC) 0000000 000000 0000000 0000000 - 6) One of the models is Barium Chloride. - a. Label the correct picture BaCl₂ - b. Label the picture to identify Ba2+ and Cl - 7) One of the pictures is a covalent substance. Label it Covalent. - 8) One of the models is Lithium Bromide - a. Label the picture LiBr - b. Label the Li⁺ ion and the Br⁻¹ ion - c. Who has a higher melting point LiBr or BaCl₂. Justify with coulomb's law. 1 changesize = 1 Coulombic attraction a. Create an ionic compound with a higher melting point then BaCl₂ βο (write formula to the left) b. Create a model in the box below to model your compound. Make sure you have proportional sizes and quantities.