Jonic Properties

Write out the dissolving equation for the following and draw a picture.

- 1) KCI > K+ + C1
 - Draw relative sizes and create a key/ legend next to beaker.
 - b. Why is one atom bigger/smaller/nearly the same? (Coulomb's law)

Similar size 3 enegy leves K+FAT CV [AT]

2) $Ba_3N_2 \rightarrow Ba^{+2} + N^{-3}$

- a. Draw relative sizes and create a key/ legend next to beaker.
- b. Why is one atom bigger/smaller/nearly the same? c. Which has a higher melting point Ba₃N₂ or KCl?
- - * How would you use coulomb's law to justify?

lenger changes = more concombic attraction = Stronger Bonds Higher Meldons points

3) KNO₃→ K⁴ + N⁰/₃ Note: NO₃-1 is a molecular ion.

4) CO₂ (this is a covalent substance that looks like O=C=O)

5) For each drawing indicate if the substance is covalent or lonic. Write the correct formula for the substance using the symbols.

Formula Ocz (C)

Molecular ΔC , D (IC)

0000000 000000 0000000 0000000

- 6) One of the models is Barium Chloride.
 - a. Label the correct picture BaCl₂
 - b. Label the picture to identify Ba2+ and Cl
- 7) One of the pictures is a covalent substance. Label it Covalent.
- 8) One of the models is Lithium Bromide
 - a. Label the picture LiBr
 - b. Label the Li⁺ ion and the Br⁻¹ ion
 - c. Who has a higher melting point LiBr or BaCl₂. Justify with coulomb's law.

1 changesize = 1 Coulombic attraction

a. Create an ionic compound with a higher melting point then BaCl₂

βο (write formula to the left)

b. Create a model in the box below to model your compound. Make sure you have proportional sizes and quantities.

